Functions

- **12.** Assume that the set A has exactly two elements and the set B has exactly three elements.
- (a) Provide an example of a function $f : A \to B$. Define the inverse function. For the given example, determine if the inverse function $f^{-1} : B \to A$ exists, and if it does, find it. If it does not exist, explain why.
- (b) Provide an example of a function $g: B \to A$. For the given example, determine if the inverse function $g^{-1}: A \to B$ exists, and if it does, find it. If it does not exist, explain why.
- (c) How many functions map A to B? How many of these functions are surjective? How many are injective? How many are bijective?
- **13.** Let \mathbb{R} be the set of real numbers, and let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by the rule

$$f(x) = 5x + 12$$

Analyze the injectivity, surjectivity, and determine the inverse function $f^{-1}(x)$.

14. Let $f : \mathbb{Z} \to \mathbb{Z}$ be a function defined by the rule

$$f(x) = x^2.$$

Analyze the injectivity, surjectivity, and bijectivity of the function f.

15. Find an example of:

- (a) An injective function $f : \mathbb{N} \to \mathbb{N}$ that is not surjective.
- (b) A function $f : \mathbb{N} \to \mathbb{N}$ that is surjective but not injective.

Absolute Value

16. Solve the inequality

$$\frac{|x+1|}{-x^2 - 2x + 15} > 0.$$

17. Solve the inequality

$$x^2 - 14 < |x+2|.$$

18. Solve the inequality

$$\left|\frac{x+2}{x-1}\right| > 2.$$

19. Solve the inequality in the set of real numbers \mathbb{R} :

$$\sqrt{x^2 - 1} \le \sqrt{|x - 1|}.$$

Write the solution in terms of intervals.

20. Solve the inequality in the set of real numbers \mathbb{R} :

$$\sqrt{x^2 - 2x - 1} \le \sqrt{|x - 1|}.$$

Write the solution in terms of intervals.

All above math problems are taken from the following website: https://osebje.famnit.upr.si/~penjic/teaching.html. THE READER CAN FIND ALL SOLUTIONS TO THE GIVEN PROBLEMS ON THE SAME PAGE.